Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
نویسندگان
چکیده
We present the first results obtained with a new instrument designed and built to study DNA-protein interactions at the single molecule level. This microscope combines optical tweezers with scanning probe microscopy and allows us to locate DNA-binding proteins on a single suspended DNA molecule. A single DNA molecule is stretched taut using the optical tweezers, while a probe is scanned along the molecule. Interaction forces between the probe and the sample are measured with the optical tweezers. The instrument thus enables us to correlate mechanical and functional properties of bound proteins with the tension within the DNA molecule. The typical friction force between a micropipette used as probe and a naked DNA molecule was found to be <1 pN. A 16 micro m DNA molecule with approximately 10-15 digoxygenin (DIG) molecules located over a 90 nm range in the middle of the DNA was used as a model system. By scanning with an antidigoxygenin (alpha-DIG) antibody-coated pipette we were able to localize these sites by exploiting the high binding affinity between this antibody-antigen pair. The estimated experimental resolution assuming an infinitesimally thin and rigid probe and a single alpha-DIG/DIG bond was 15 nm.
منابع مشابه
An overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملLabel-free free-solution nanoaperture optical tweezers for single molecule protein studies.
Nanoaperture optical tweezers are emerging as useful label-free, free-solution tools for the detection and identification of biological molecules and their interactions at the single molecule level. Nanoaperture optical tweezers provide a low-cost, scalable, straight-forward, high-speed and highly sensitive (SNR ∼ 33) platform to observe real-time dynamics and to quantify binding kinetics of pr...
متن کاملScanning a DNA Molecule for Bound Proteins Using Hybrid Magnetic and Optical Tweezers
The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an ...
متن کاملCombining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.
Complexity and heterogeneity are common denominators of the many molecular events taking place inside the cell. Single-molecule techniques are important tools to quantify the actions of biomolecules. Heterogeneous interactions between multiple proteins, however, are difficult to study with these technologies. One solution is to integrate optical trapping with micro-fluidics and single-molecule ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microscopy research and technique
دوره 70 1 شماره
صفحات -
تاریخ انتشار 2007